Non-contact atomic force microscopy study of hydroxyl groups on the spinel MgAl2O4(100) surface.
نویسندگان
چکیده
Atom-resolved non-contact atomic force microscopy (NC-AFM) studies of the magnesium aluminate (MgAl(2)O(4)) surface have revealed that, contrary to expectations, the (100) surface is terminated by an aluminum and oxygen layer. Theoretical studies have suggested that hydrogen plays a strong role in stabilizing this surface through the formation of surface hydroxyl groups, but the previous studies did not discuss in depth the possible H configurations, the diffusion behaviour of hydrogen atoms and how the signature of adsorbed H is reflected in atom-resolved NC-AFM images. In this work, we combine first principles calculations with simulated and experimental NC-AFM images to investigate the role of hydrogen on the MgAl(2)O(4)(100) surface. By means of surface energy calculations based on density functional theory, we show that the presence of hydrogen adsorbed on the surface as hydroxyl groups is strongly predicted by surface stability considerations at all relevant partial pressures of H(2) and O(2). We then address the question of how such adsorbed hydrogen atoms are reflected in simulated NC-AFM images for the most stable surface hydroxyl groups, and compare with experimental atom-resolved NC-AFM data. In the appendices we provide details of the methods used to simulate NC-AFM using first principles methods and a virtual AFM.
منابع مشابه
Stable cation inversion at the MgAl2O4(100) surface.
From an interplay of atom-resolved noncontact atomic force microscopy, surface x-ray diffraction experiments, and density functional theory calculations, we reveal the detailed atomic-scale structure of the (100) surface of an insulating ternary metal oxide, MgAl2O4 (spinel). We surprisingly find that the MgAl2O4(100) surface is terminated by an Al and O-rich structure with a thermodynamically ...
متن کاملAtomic structure of a spinel-like transition Al2O3(100) surface.
We study a crystalline epitaxial alumina thin film with the characteristics of a spinel-type transition Al2O3(100) surface by using atom-resolved noncontact atomic force microscopy and density functional theory. It is shown that the films are terminated by an Al-O layer rich in Al vacancies, exhibiting a strong preference for surface hydroxyl group formation in two configurations. The transitio...
متن کاملNoncontact atomic force microscopy study of the spinel MgAl2O4(111) surface
Based on high-resolution noncontact atomic force microscopy (NC-AFM) experiments we reveal a detailed structural model of the polar (111) surface of the insulating ternary metal oxide, MgAl(2)O(4) (spinel). NC-AFM images reveal a 6√3×6√3R30° superstructure on the surface consisting of patches with the original oxygen-terminated MgAl(2)O(4)(111) surface interrupted by oxygen-deficient areas. The...
متن کاملGrain size influence on the thermal properties of stabilized zirconia-nano spinel (Al2O3-MgO) composites
Abstract. Cubic crystalline oxides such as Y2O3 and MgO is used to stabalized zirconia phases at high temperature. In this paper the Y2O3 powder was added to stabilized zirconia and preparing a mixture of MgAl2O4 Spinel by mixing 1mol of nano-MgO with 1 mol of nano-Al2O3 powders. The spinel was added to the Y2O3-ZrO2 by various weight percentage (5, 10, 15, 20 and 25 wt%), and after that the sp...
متن کاملExploring mechanism of xanthate adsorption on chalcopyrite surface: An atomic force microscopy study
In this work, adsorption of the potassium amyl xanthate collector on the pure chalcopyrite surface was studied by applying atomic force microscopy (AFM). The adsorption experiments were carried out at different concentrations of the collector and at diverse pH values in the presence or absence of exterior ions. The changes occurring in the surface morphology of chalcopyrite due to the collector...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 23 32 شماره
صفحات -
تاریخ انتشار 2012